Skip to main content
Log in

Role of Echocardiography in the Evaluation of Left Ventricular Assist Devices: the Importance of Emerging Technologies

  • Echocardiography (JM Gardin, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The role of left ventricular assist devices (LVAD) in patients with end-stage heart failure is well known, both as a temporary treatment before transplantation and as destination therapy, in a scenario of a relative shortage of donors to satisfy the increasing requests for transplantation. The increased population of LVAD patients needs careful imaging assessment before, during, and after LVAD implantation; echocardiography is the best tool for their evaluation and is considered the diagnostic technique of choice for the assessment before, during, and after device implantation. Although the conventional echocardiographic assessment is quite effective in evaluating the main critical issues, the role of new technologies like three-dimensional echocardiography and myocardial deformation measurements is still not properly clarified. In this review, we aim to provide an overview of the main elements that should be considered in the assessment of these patients, underlining the role that could be played by new techniques to improve the diagnostic and prognostic effectiveness of echocardiography in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rose EA, Moskowitz AJ, Packer M, et al. The REMATCH trial: rationale, design, and end points. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure. Ann Thorac Surg. 1999;67:723–30.

    Article  CAS  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322. Erratum in: Circulation. 2015;131:e535.

    Article  PubMed  Google Scholar 

  3. Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    Article  PubMed  Google Scholar 

  4. Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    Article  PubMed  Google Scholar 

  5. Carluccio E, Dini FL, Biagioli P, et al. The ’Echo Heart Failure Score’: an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail. 2013;15:868–76.

    Article  PubMed  Google Scholar 

  6. Cintron G, Johnson G, Francis G, et al. Prognostic significance of serial changes in left ventricular ejection fraction in patients with congestive heart failure. The V-HeFT VA Cooperative Studies Group. Circulation. 1993;87:VI17–23.

    CAS  PubMed  Google Scholar 

  7. Wong M, Germanson T, Taylor WR, et al. Felodipine improves left ventricular emptying in patients with chronic heart failure: V-HeFT III echocardiographic substudy of multicenter reproducibility and detecting functional change. J Card Fail. 2000;6:19–28.

    Article  CAS  PubMed  Google Scholar 

  8. Todaro MC, Khandheria BK, Paterick TE, et al. The practical role of echocardiography in selection, implantation, and management of patients requiring LVAD therapy. Curr Cardiol Rep. 2014;16:468.

    Article  PubMed  Google Scholar 

  9. Kühl HP, Schreckenberg M, Rulands D, et al. High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J Am Coll Cardiol. 2004;43:2083–90.

    Article  PubMed  Google Scholar 

  10. Dorosz JL, Lezotte DC, Weitzenkamp DA, et al. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;59:1799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iacoviello M, Puzzovivo A, Guida P, et al. Independent role of left ventricular global longitudinal strain in predicting prognosis of chronic heart failure patients. Echocardiography. 2013;30:803–11.

    Article  PubMed  Google Scholar 

  12. Stanton T, Leano R, Marwick TH. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging. 2009;2:356–64.

    Article  PubMed  Google Scholar 

  13. Motoki H, Borowski AG, Shrestha K, et al. Incremental prognostic value of assessing left ventricular myocardial mechanics in patients with chronic systolic heart failure. J Am Coll Cardiol. 2012;60:2074–81.

    Article  PubMed  Google Scholar 

  14. Chang SN, Lai YH, Yen CH, et al. Cardiac mechanics and ventricular twist by three-dimensional strain analysis in relation to B-type natriuretic peptide as a clinical prognosticator for heart failure patients. PLoS One. 2014;9:e115260. Erratum in: PLoS One. 2015;10:e0123049.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ma C, Chen J, Yang J, et al. Quantitative assessment of left ventricular function by 3-dimensional speckle-tracking echocardiography in patients with chronic heart failure: a meta-analysis. J Ultrasound Med. 2014;33:287–95.

    Article  PubMed  Google Scholar 

  16. Hamilton A, Huang SL, Warnick D, et al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes: studies in a new experimental model. Circulation. 2002;105:2772–8.

    Article  PubMed  Google Scholar 

  17. Fine NM, Abdelmoneim SS, Dichak A, et al. Safety and feasibility of contrast echocardiography for LVAD evaluation. JACC Cardiovasc Imaging. 2014;7:429–30.

    Article  PubMed  Google Scholar 

  18. Liao KK, Miller L, Toher C, et al. Timing of transesophageal echocardiography in diagnosing patent foramen ovale in patients supported with left ventricular assist device. Ann Thorac Surg. 2003;75:1624–6.

    Article  PubMed  Google Scholar 

  19. Patangi SO, George A, Pauli H, et al. Management issues during HeartWare left ventricular assist device implantation and the role of transesophageal echocardiography. Ann Card Anaesth. 2013;16:259–67.

    Article  PubMed  Google Scholar 

  20. Puskas F, Cleveland Jr JC, Singh R, et al. Detection of left ventricular apical thrombus with three-dimensional transesophageal echocardiography. Semin Cardiothorac Vasc Anesth. 2011;15:102–4.

    Article  PubMed  Google Scholar 

  21. Anwar AM, Nosir YF, Ajam A, et al. Central role of real-time three-dimensional echocardiography in the assessment of intracardiac thrombi. Int J Cardiovasc Imaging. 2010;26:519–26.

    Article  PubMed  Google Scholar 

  22. Sattiraju S, Masri SC, Liao K, et al. Three-dimensional transesophageal echocardiography of a thrombus entrapped by a patent foramen ovale. Ann Thorac Surg. 2012;94:e101–2.

    Article  PubMed  Google Scholar 

  23. Rana BS, Thomas MR, Calvert PA, et al. Echocardiographic evaluation of patent foramen ovale prior to device closure. JACC Cardiovasc Imaging. 2010;3:749–60.

    Article  PubMed  Google Scholar 

  24. Shanks M, Manawadu D, Vonder Muhll I, et al. Detection of patent foramen ovale by 3D echocardiography. JACC Cardiovasc Imaging. 2012;5:329–31.

    Article  PubMed  Google Scholar 

  25. Rana BS, Shapiro LM, McCarthy KP, et al. Three-dimensional imaging of the atrial septum and patent foramen ovale anatomy: defining the morphological phenotypes of patent foramen ovale. Eur J Echocardiogr. 2010;11:i19–25.

    Article  PubMed  Google Scholar 

  26. Sheinberg R, Brady MB, Mitter N. Intraoperative transesophageal echocardiography and ventricular assist device insertion. Semin Cardiothorac Vasc Anesth. 2011;15:14–24.

    Article  PubMed  Google Scholar 

  27. Ammar KA, Umland MM, Kramer C, et al. The ABCs of left ventricular assist device echocardiography: a systematic approach. Eur Heart J Cardiovasc Imaging. 2012;13:885–99.

    Article  PubMed  Google Scholar 

  28. Estep JD, Vivo RP, Krim SR, et al. Echocardiographic evaluation of hemodynamics in patients with systolic heart failure supported by a continuous-flow LVAD. J Am Coll Cardiol. 2014;64:1231–41. A useful, noninvasive and effective algorithm to predict LV filling pressures in patients with an LVAD.

    Article  PubMed  Google Scholar 

  29. Andersen M, Gustafsson F, Madsen PL, et al. Hemodynamic stress echocardiography in patients supported with a continuous-flow left ventricular assist device. JACC Cardiovasc Imaging. 2010;3:854–9.

    Article  PubMed  Google Scholar 

  30. Topilsky Y, Hasin T, Oh JK, et al. Echocardiographic variables after left ventricular assist device implantation associated with adverse outcome. Circ Cardiovasc Imaging. 2011;4:648–61.

    Article  PubMed  Google Scholar 

  31. Martinez SC, Bradley EA, Novak EL, et al. Slope of the anterior mitral valve leaflet: a new measurement of left ventricular unloading for left ventricular assist devices and systolic dysfunction. Tex Heart Inst J. 2014;41:262–72.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McCarthy PM, Nakatani S, Vargo R, et al. Structural and left ventricular histologic changes after implantable LVAD insertion. Ann Thorac Surg. 1995;59:609–13.

    Article  CAS  PubMed  Google Scholar 

  33. Xydas S, Rosen RS, Ng C, et al. Mechanical unloading leads to echocardiographic, electrocardiographic, neurohormonal, and histologic recovery. J Heart Lung Transplant. 2006;25:7–15.

    Article  PubMed  Google Scholar 

  34. Moon MR, Bolger AF, DeAnda A, et al. Septal function during left ventricular unloading. Circulation. 1997;95:1320–7.

    Article  CAS  PubMed  Google Scholar 

  35. Topilsky Y, Price TN, Atchison FW, et al. Atypical tamponade hemodynamic in a patient with temporary left ventricular assist device. Interact Cardiovasc Thorac Surg. 2011;12:832–4.

    Article  PubMed  Google Scholar 

  36. Hernandez CM, Singh P, Hage FG, et al. Live/Real time three-dimensional transthoracic echocardiographic assessment of pericardial disease. Echocardiography. 2009;26:1250–63.

    Article  PubMed  Google Scholar 

  37. Gupta S, Woldendorp K, Muthiah K, et al. Normalisation of haemodynamics in patients with end-stage heart failure with continuous-flow left ventricular assist device therapy. Heart Lung Circ. 2014;23:963–9.

    Article  PubMed  Google Scholar 

  38. McDiarmid A, Gordon B, Wrightson N, et al. Hemodynamic, echocardiographic, and exercise-related effects of the HeartWare left ventricular assist device in advanced heart failure. Congest Heart Fail. 2013;19:11–5.

    Article  PubMed  Google Scholar 

  39. Morgan JA, Brewer RJ, Nemeh HW, et al. Left ventricular reverse remodeling with a continuous flow left ventricular assist device measured by left ventricular end-diastolic dimensions and severity of mitral regurgitation. ASAIO J. 2012;58:574–7.

    Article  PubMed  Google Scholar 

  40. Topilsky Y, Oh JK, Shah DK, et al. Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. JACC Cardiovasc Imaging. 2011;4:211–22.

    Article  PubMed  Google Scholar 

  41. Uriel N, Morrison KA, Garan AR, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60:1764–75.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Estep JD, Yarrabolu T, Win HK, et al. Median axial flow pump speed associated with cessation of aortic valve opening is an indicator of remission of chronic heart failure in patients supported by a left ventricular assist device. J Heart Lung Transplant. 2008;27:S185.

    Article  Google Scholar 

  43. Mancini DM, Beniaminovitz A, Levin H, et al. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 1998;98:2383–9.

    Article  CAS  PubMed  Google Scholar 

  44. George RS, Sabharwal NK, Webb C, et al. Echocardiographic assessment of flow across continuous-flow ventricular assist devices at low speeds. J Heart Lung Transplant. 2010;29:1245–52.

    Article  PubMed  Google Scholar 

  45. Smiseth OA, Torp H, Opdahl A, et al. Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J. 2015. [Epub ahead of print].

  46. Gupta DK, Skali H, Rivero J, et al. Assessment of myocardial viability and left ventricular function in patients supported by a left ventricular assist device. J Heart Lung Transplant. 2014;33:372–81.

    Article  PubMed  PubMed Central  Google Scholar 

  47. St John Sutton M, Pfeffer MA, Moye L, et al. Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation. 1997;96:3294–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zornoff LA, Skali H, Pfeffer MA, et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39:1450–5.

    Article  PubMed  Google Scholar 

  49. Damy T, Kallvikbacka-Bennett A, Goode K, et al. Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J Card Fail. 2012;18:216–25.

    Article  PubMed  Google Scholar 

  50. Meris A, Faletra F, Conca C, et al. Timing and magnitude of regional right ventricular function: a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction. J Am Soc Echocardiogr. 2010;23:823–31.

    Article  PubMed  Google Scholar 

  51. Guendouz S, Rappeneau S, Nahum J, et al. Prognostic significance and normal values of 2D strain to assess right ventricular systolic function in chronic heart failure. Circ J. 2012;76:127–36.

    Article  PubMed  Google Scholar 

  52. Motoki H, Borowski AG, Shrestha K, et al. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J Am Soc Echocardiogr. 2014;27:726–32.

    Article  PubMed  Google Scholar 

  53. Cameli M, Bernazzali S, Lisi M, et al. Right ventricular longitudinal strain and right ventricular stroke work index in patients with severe heart failure: left ventricular assist device suitability for transplant candidates. Transplant Proc. 2012;44:2013–5.

    Article  CAS  PubMed  Google Scholar 

  54. Kim J, Cohen SB, Atalay MK, et al. Quantitative assessment of right ventricular volumes and ejection fraction in patients with left ventricular systolic dysfunction by real time three-dimensional echocardiography versus cardiac magnetic resonance imaging. Echocardiography. 2015;32:805–12.

    Article  PubMed  Google Scholar 

  55. Marzec LN, Ambardekar AV. Preoperative evaluation and perioperative management of right ventricular failure after left ventricular assist device implantation. Semin Cardiothorac Vasc Anesth. 2013;17:249–61.

    Article  PubMed  Google Scholar 

  56. Romano MA, Cowger J, Aaronson KD, et al. Diagnosis and management of right-sided heart failure in subjects supported with left ventricular assist devices. Curr Treat Options Cardiovasc Med. 2010;12:420–30.

    Article  PubMed  Google Scholar 

  57. Murali S, Kormos RL, Uretsky BF, et al. Preoperative pulmonary hemodynamics and early mortality after orthotopic cardiac transplantation: the Pittsburgh experience. Am Heart J. 1993;126:896–904.

    Article  CAS  PubMed  Google Scholar 

  58. Lam KM, Ennis S, O’Driscoll G, et al. Observations from non-invasive measures of right heart hemodynamics in left ventricular assist device patients. J Am Soc Echocardiogr. 2009;22:1055–62.

    Article  PubMed  Google Scholar 

  59. Raina A, Seetha Rammohan HR, Gertz ZM, et al. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail. 2013;19:16–24.

    Article  PubMed  Google Scholar 

  60. Grant AD, Smedira NG, Starling RC, et al. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8. This is the first study that evaluated RV strain by STE to predict RVF outcomes in patients after LVAD implantation.

    Article  PubMed  Google Scholar 

  61. Kato TS, Farr M, Schulze PC, et al. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109:246–51.

    Article  PubMed  Google Scholar 

  62. Dandel M, Potapov E, Krabatsch T, et al. Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation. 2013;128:S14–23.

    Article  PubMed  Google Scholar 

  63. Kalogeropoulos AP, Al-Anbari R, Pekarek A, et al. The Right Ventricular Function After Left Ventricular Assist Device (RVF-LVAD) study: rationale and preliminary results. Eur Heart J Cardiovasc Imaging. 2015. [Epub ahead of print].

  64. Cameli M, Lisi M, Righini FM, et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J Heart Lung Transplant. 2013;32:424–30.

    Article  PubMed  Google Scholar 

  65. Kato TS, Jiang J, Schulze PC, et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail. 2013;1:216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cameli M, Sparla S, Focardi M, et al. Evaluation of right ventricular function in the management of patients referred for left ventricular assist device therapy. Transplant Proc. 2015;47:2166–8.

    Article  CAS  PubMed  Google Scholar 

  67. Herod JW, Ambardekar AV. Right ventricular systolic and diastolic function as assessed by speckle-tracking echocardiography improve with prolonged isolated left ventricular assist device support. J Card Fail. 2014;20:498–505.

    Article  PubMed  Google Scholar 

  68. Kiernan MS, French AL, DeNofrio D, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21:189–97.

    Article  PubMed  Google Scholar 

  69. Pal JD, Klodell CT, John R, et al. Low operative mortality with implantation of a continuous-flow left ventricular assist device and impact of concurrent cardiac procedures. Circulation. 2009;120:S215–9.

    Article  PubMed  Google Scholar 

  70. Vengala S, Nanda NC, Dod HS, et al. Images in geriatric cardiology. Usefulness of live three-dimensional transthoracic echocardiography in aortic valve stenosis evaluation. Am J Geriatr Cardiol. 2004;13:279–84.

    Article  PubMed  Google Scholar 

  71. Fang L, Hsiung MC, Miller AP, et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography. 2005;22:775–81. Erratum in: Echocardiography. 2006;23:table of contents.

    Article  PubMed  Google Scholar 

  72. Rao V, Slater JP, Edwards NM, et al. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac Surg. 2001;71:1448–53.

    Article  CAS  PubMed  Google Scholar 

  73. Aggarwal A, Raghuvir R, Eryazici P, et al. The development of aortic insufficiency in continuous-flow left ventricular assist device-supported patients. Ann Thorac Surg. 2013;95:493–8.

    Article  PubMed  Google Scholar 

  74. Tuzun E, Pennings K, van Tuijl S, et al. Assessment of aortic valve pressure overload and leaflet functions in an ex vivo beating heart loaded with a continuous flow cardiac assist device. Eur J Cardiothorac Surg. 2014;45:377–83.

    Article  PubMed  Google Scholar 

  75. Ewe SH, Delgado V, van der Geest R, et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol. 2013;112:560–6.

    Article  PubMed  Google Scholar 

  76. Kellman SE, Feider AJ, Jeevanandam V, et al. Can intraoperative transesophageal echocardiography predict postoperative aortic insufficiency in patients receiving implantable left ventricular assist devices? J Cardiothorac Vasc Anesth. 2015;29:901–5.

    Article  PubMed  Google Scholar 

  77. Agricola E, Oppizzi M, Pisani M, et al. Accuracy of real-time 3D echocardiography in the evaluation of functional anatomy of mitral regurgitation. Int J Cardiol. 2008;127:342–9.

    Article  PubMed  Google Scholar 

  78. Pérez de Isla L, Beńitez DR, Serra V, et al. Usefulness of real time 3D echocardiography in assessment of rheumatic mitral stenosis. Arch Cardiol Mex. 2005;75:210–21. Spanish.

    PubMed  Google Scholar 

  79. Piacentino 3rd V, Williams ML, Depp T, et al. Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac Surg. 2011;91:1342–6. discussion 1346-7.

    Article  PubMed  Google Scholar 

  80. Park YH, Song JM, Lee EY, et al. Geometric and hemodynamic determinants of functional tricuspid regurgitation: a real-time three-dimensional echocardiography study. Int J Cardiol. 2008;124:160–5.

    Article  PubMed  Google Scholar 

  81. Lesicka A, Feinman JW, Thiele K, et al. Echocardiographic artifact induced by HeartWare left ventricular assist device. Anesth Analg. 2015;120:1208–11.

    Article  PubMed  Google Scholar 

  82. Abusaid GH, Ahmad M. Transthoracic real time three-dimensional echocardiography in Impella placement. Echocardiography. 2012;29:E105–6.

    Article  PubMed  Google Scholar 

  83. Paluszkiewicz L, Schulte-Eistrup S, Körtke H, et al. Thrombosis of the LVAD inflow cannula detected by transthoracic echocardiography: 2D and 3D thrombus visualization. Echocardiography. 2011;28:E194–5.

    Article  PubMed  Google Scholar 

  84. Aissaoui N, Paluszkiewicz L, Koertke HH, et al. Echocardiography can be more sensitive than thoracic computed tomography in detecting a thrombus in the inflow cannula of a continuous left ventricular assist device. Echocardiography. 2011;28:E215–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Jennifer Pfaff and Susan Nord of Aurora Cardiovascular Services for editorial preparation of the manuscript and Brian Schurrer and Brian Miller of Aurora Research Institute for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy K. Khandheria.

Ethics declarations

Conflict of Interest

Luca Longobardo, Christopher Kramer, Scipione Carerj, Concetta Zito, Renuka Jain, Valentin Suma, Vinay Thohan, Nasir Sulemanjee, Frank X. Downey, and Bijoy K. Khandheria declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longobardo, L., Kramer, C., Carerj, S. et al. Role of Echocardiography in the Evaluation of Left Ventricular Assist Devices: the Importance of Emerging Technologies. Curr Cardiol Rep 18, 62 (2016). https://doi.org/10.1007/s11886-016-0739-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0739-4

Keywords

Navigation